1km メッシュデータによる北海道の気候変動解析 ~ケッペンの気候区分を用いて~

Climate Change Analysis of Hokkaido by Mesh Data Using Koeppen Climate Classification

葛西 光希¹, 木村 圭司² Koki KASAI¹ and Keiji KIMURA²

要旨

日本でケッペンの気候区分を適用すると、東北から北海道にかけての地域で、温帯から亜寒帯の遷移帯がみられる。本研究では、 この遷移帯付近に位置し、かつ比較的小さな範囲である北海道(北方領土は除く)を対象としてケッペンの気候区分を適用した。また、 気候の面的な分布を見られるよう、気象台や AMeDAS 観測所のデータより詳細な、1 km メッシュデータを用いて区分を行った。 この結果、北海道の代表的な気候区とされている亜寒帯の Df (Dfa・Dfb・Dfc) 以外にも、温帯の Cfa・Cfb・Cs*や、それにわず かながら Dwb、寒帯の ET と、さまざまな気候区が存在することが分かった。また、1971 ~ 2000 年、1981 ~ 2010 年の2 期間につ いて同様の解析を行い、気候区が変化した地域を明らかにした。2 期間で生じたすべての気候区変化パターンをクロス集計により明 らかにした。さらに、各変化パターンの代表メッシュを抽出し、気温や降水量のデータを用いて、変化が生じた理由を説明した。 北海道において、ある気候区が変化するパターンとその逆方向の気候区への変化パターンが混在した地域が見られ、この地域は気 候区の遷移帯であると判断できる。遷移帯において気候区が変化したメッシュ数を比較すると、温暖化の傾向を示すメッシュ数が 多かった。北海道という比較的小さな地域でもケッペンの気候区分により気候変動の一側面が把握できたことから、小地域におけ るケッペンの気候区分が有効性を持つ場合があることが確認された。

Abstract

Most Japanese high school students learn about climatology and its classifications by studying geography. Of the numerous forms of climate classification, the Koeppen classification (Koeppen, 1936) is the most widely used. This classification method illustrates the differences in global climate according to vegetation associated with five main climate types including A, tropical; B, arid; C, temperate; D, continental; and E, polar. These climate types are defined by monthly temperature and precipitation and are further divided into various subtypes according to seasonal temperature and precipitation changes.

Only two of these types, C and D, and certain subtypes apply to Japan. The main transition band between these types is distributed through Hokkaido and Tohoku. Miyamoto (2009) analyzed the Automated Meteorological Data Acquisition System (AMeDAS) data reported by the Japan Meteorological Agency in local areas and divided Hokkaido into the following four climate provinces: Cfa, humid subtropical characterized by mild climate with hot summer and no dry season; Cfb, marine west coast characterized by mild climate with warm summer and no dry season; Dfa, humid continental characterized by humid climate with severe winter, hot summer, and no dry season; and Dfb, characterized by humid climate with severe winter, warm summer, and no dry season. Moreover, numerical land data in Japan is prepared by the national government and is based on 1-km mesh climate data including temperature, precipitation, and solar radiation. This information is calculated by AMeDAS observation data, which considers topographical and urban effects on climate.

The present study area is Hokkaido, Japan, excluding the four northern territories occupied by Russia after World War II. The local climate distribution was analyzed by applying the 1-km mesh climate data for two periods: 1971–2000 and 1981–2010. Climate change during these periods was clarified by comparing the two distribution maps.

As a result, the climate in Hokkaido was classified into the following regions: temperate in the southern coastal area

¹⁾ 北海道大学工学部情報エレクトロニクス学科・学部生/ Undergraduate student, School of Engineering, Hokkaido University, Japan

²⁾ 北海道大学大学院情報科学研究科/ Graduate School of Information Science and Technology, Hokkaido University, Japan

(Cfa; Cfb; and Cs*, which is characterized by mild climate with dry summer); continental in most part of Hokkaido including near the Sapporo metropolitan area (Dfa; Dfb; Dfc, characterized by subarctic climate with severe winter, cool summer, and no dry season; and Dwb, humid continental climate characterized by humid climate with severe, dry winter and warm summer); and a very limited Polar region near the top of the Mt. Taisetsu (ET, tundra, characterized by Polar tundra, no true summer). These results have not appeared in previous literature.

The climate divisions remained unchanged during these two periods in more than 97% of the study area. In this study, the tendency and the changes in the area of division in the remaining less than 3% area are considered.

Near the borders of main classification types and subtypes determined by Hokkaido, climate change is sensitive. As a result of analysis in the present study, the following 14 division change patterns have been determined: 1) Cfa-->Cfb, 11 mesh at the west side of Oshima Peninsula; 2) Cfb-->Cfa, 88 mesh at the inland of the west side of Oshima Peninsula; 3) Cfb-->Cs*, 5 mesh at the west side of the Matsumae Peninsula; 4) Cs*-->Cfb, 10 mesh at the west side of Oshima Peninsula; 5) Cfb -->Dfb, 135 mesh at the west side of Okushiri Island; 6) Dfb -->Cfb, 391 mesh near Muroran; 7) Dfb -->Cs*, 25 mesh at Shakotan Peninsula; 8) Dfb -->Dfa, 19 mesh in Sapporo; 9) Dfb-->Dfc, 205 mesh at the highland area in Hokkaido; 10) Dfc-->Dfb, 865 mesh at the highland area in Hokkaido; 11) Dfb-->Dwb, 247 mesh at some parts of eastern Hokkaido; 12) Dwb-->Dfb, 41 mesh along the coast near Mukawa; 13) Dfc-->ET, 1 mesh near the summit of Asahidake at Mt. Taisetsu; and 14) ET-->Dfc, 1 mesh near the point of 13). Moreover, interactive change such as Cfb<-->Dfb is apparent near these classification borders; warming changes such as Dfb-->Dfb. Remarkable warming is apparent owing to the heat island effect, particularly in the urban area of central Sapporo. Wetter changes such as Dwb-->Dfb are distributed in several parts of eastern Hokkaido and drier changes such as Dfb-->Dwa are distributed only along the coast near Mukawa.

In this study, Hokkaido was chosen as the research area because its size allows for Koeppen climate classification to be adopted for describing global climate change. However, the result of this study can also be applied to local climate change because it includes the classification of climate-type borders. It has been determined that the main climate change around Hokkaido is warming; the reasons for this change will be considered in future work.

キーワード:ケッペンの気候区分,北海道,気候変動,温暖化,1kmメッシュ

Key Words : Koeppen climate classification, Hokkaido, climate change, warming temperature, 1-km mesh data

I. はじめに

世界の気候区分のうち, 日本の高等学校教育で中心 的に教えられている区分方法は、ケッペンの気候区分 である(片平ほか, 2013 など)。ケッペンの気候区分 は Köppen (1936) でまとめられた後も修正が重ねら れ、1954年にガイガーによる修正や、トレワーサが 高山気候を追加するといった修正が加えられている。 ケッペンの気候区分は、日本のみならず海外の大学教 養課程における教育にも頻繁に使われている(例えば、 Hess and Tasa, 2013)。この気候区分は植生景観を参 考とした経験的手法であり、背の高い樹木の有無と、 寒暖・乾湿を組み合わせ、熱帯(A)・乾燥帯(B)・ 温帯 (C)・亜寒帯 (D)・寒帯 (E) の5区分に大き く分けられ、さらに気温や降水量の季節変化などによ り小区分される。ケッペンの気候区分は、月平均気温 と月合計降水量を用いて算出できるため、簡単に区分 が可能である (水越・山下, 1985)。また、植生景観 とほぼ対応することから、気候を景観からイメージ可 能であるという長所がある。

一方で,ケッペンの気候区分では,大陸東西の差が 表現できないことや,そもそも気候ではなく植生景観 にあわせた経験的な区分であり気候の成因を考慮して いないという問題点がある。また、この気候区分は世 界の広範囲を対象とすることに適している。例えば、 赤道上では熱帯が、両極付近では寒帯が分布している。 しかし、日本を区分すると東北から南西諸島に至る広 い地域が温帯に、東北の一部から北海道に至る地域が 亜寒帯に大分類される。東北地方と南西諸島が同じ気 候区であることに違和感を覚える人は多いであろう。

さて、ケッペンの気候区分に限らず、気候区分を行 う際に、どの期間の気候データを使用するかは、分類 される地域にかかわる大きな問題となりうる。本来は 最も新しい平年値を使って表現するのが望ましいと思 われるが、実際にはKöppen (1936)による区分がそ のまま引用されることも多い。この結果、日本の高等 学校教育で使用される各社の地図帳を見ると、ケッペ ンの気候区分図で気候区の境界線は細かな違いがみら れるのが現状である。一方で、Kottek et al. (2006) や Peel et al. (2007)では、ケッペンとそれを改良し たガイガーによる基準により、当時の最新の気候値を 用いて更新した、気候区分図が作成されている。

こうしたケッペンの気候区分を日本に当てはめた例 のうち,特に北海道に着目すると,福井(1938)で は,北海道の高山の山頂部にE,局所的だが襟裳岬 付近に Cfb があることが示されている。また、福井 (1985) では、北海道の大部分が Dfb¹⁾ であり、山岳 部の大部分は Dfc, 山岳部のごく一部に ET, 道南の 一部には Dfa もみられる。高等学校教育で使用され る地図帳(帝国書院編集部, 1984)では, 北海道には Dfb のほかに ET, Cfb が示されている。ケッペンの 気候区分を特に北日本に当てはめた研究としては、宮 本 (2009) がある。この宮本 (2009) では、北日本の 気象官署の平年値および AMeDAS における 1979~ 2000年のデータを使用して、ケッペンの気候区分を 適用した。その結果、北海道はCfa・Cfb・Dfa・Dfb の4種類に分類されている。また、木村(2011)では、 1971~2000年という1期間のメッシュ気候値を用い て. 北方領土を除く北海道を対象にケッペンの気候区 分を行っている。その結果. 北海道の大部分は Cfa・ Cfb・Dfb・Dfc に分類されているが、その他の気候区 に関する言及はない。

一方,ケッペンの気候区分やその修正版を用い た気候変動の解析も行われている。Fraedrich et al. (2001) では 20 世紀に熱帯とツンドラ域で特に気 候帯の変化が起こったとされる。また Gerstengarbe and Werner (2009) は 1901 ~ 2003 年のヨーロッパ について、ケッペンの気候区分の修正版 (Guetter and Kutzbach, 1990) をもとに気候変動を解析した 結果、特に最後の20年間でステップ気候区などが増 加し、大陸性の亜寒帯・寒帯気候区が減少している。 Beck et al. (2005) では 1951 ~ 2000 年の平均値と 1986~2000年の平均値によりケッペンの気候区分を CRU²による 0.5 度グリッドデータを使って計算した。 そして、各気候区間の推移について検討をおこなっ た結果、温暖化だけでなく乾燥化の影響も多くの地 点で見られることが示されている。Rubel and Kottek (2010)は、1901~2002年の気候観測値と2003~ 2100年の気候シミュレーション結果にケッペンの気 候区分を適用した結果, 寒帯から亜寒帯, 亜寒帯から 温帯,温帯から乾燥帯,また温帯から熱帯という温暖 化の方向に 1.3~4.7% ずつ移行することが示されて いる。また、日本でも宮本(2009)では、ケッペンの 気候区分による解析とともに、AMeDAS データを用 いる上で1971~2000年の平年値と1979~2000年の 平均値を比較している。その結果、巨視的にはあまり 変わらないが、詳しく見ると、やや温暖化の傾向が見 られることが示されている。しかし、ケッペンの気候 区分による気候区が変化したかどうかは表現されてい ない。

ところで、日本では月ごとの平均気温や降水量など の気候要素について、観測値から平年値を国土数値情 報の第3次地域区画(第3次メッシュ)に合わせて推 定したデータが公表されている。このデータは、1971 年から2000年までのデータを解析した「メッシュ気 候値2000」と、1981年から2010年までのデータを解 析した「メッシュ平年値2010」³であり、気象庁によ り作成されている。このデータを用いると、1 km メッ シュ⁴でケッペンの気候区分を行うことが可能とな る。

そこで本研究では、高等学校の地理教育で使用され ているケッペンの気候区分を、1 km メッシュの気候 データを使用して北海道に適用する。そして、気候区 の分布の特徴を示すとともに、1971 ~ 2000 年と 1981 ~ 2010 年という 2 期間による気候区分結果を比較し、 気候変動による気候区の推移について明らかにする。

Ⅱ. データと解析方法

解析に使用したデータは、気象庁による統計期間 1971~2000年の「メッシュ気候値2000」、ならびに 統計期間 1981 ~ 2010年の「メッシュ平年値 2010」 である。このメッシュ気候値(平年値)は、地形因子 と都市因子の影響を考慮した重回帰分析により、気 象官署やアメダス観測地点による観測値を1 km メッ シュとなる第3次地域区画に合わせて推定したデータ であり,北海道では北方領土を除く地域が収録されて いる。このメッシュ気候値(平年値)データには、観 測地点の経緯度を示す標準地域メッシュの第3次メッ シュコードに加え、各観測地点における気温の日平均 値を月(年)平均した平均気温,日最高値を月(年) 平均した日最高気温、日最低値を月(年)平均した日 最低気温,降水量の月(年)合計値,積雪の深さの最 大値を示した最深積雪, 日照時間の月(年)合計値, 全天日射量の日積算量を月(年)平均したものが収録 されている。

このデータを用いて,北方領土を除く北海道(全 84,472メッシュ)の各月の平均気温と降水量からケッ ペンの気候区分を行った。ケッペンの気候区分は、図 1に示したフローチャートにしたがって, まず ET・ Dw・Df・Cf・Cs*に区分した。ケッペンの気候区分 における Cs には Köppen (1936) による修正で, 夏 季の最少雨月降水量 30 mm 未満という条件が加えら れている。しかし、冬の降水量の変化について特に着 目して、本研究では図1に示したように、この修正が 行われる以前の気候区分を使用し、その結果確認さ れた気候区をCs*とした。なお、Dw・Df・Cf につい ては、さらに詳細な気温の解析を付加することにより Dwb・Dfa・Dfb・Dfc・Cfa・Cfbに区分した。Dfa・ Cfa と区分されたメッシュは、最暖月平均気温が 22℃ 以上のメッシュである。Dwb・Dfb・Cfb と区分され たメッシュは、最暖月平均気温が22℃未満で、10℃ 以上の月が少なくとも4ヶ月確認されたメッシュであ る。Dfc と区分されたメッシュは、最寒月平均気温が -38℃以上で、10℃以上の月が4ヶ月未満のメッシュ である。以上の解析を2期間のデータに対して行い, この期間の気候変動による気候区の変化を明らかにす る。

Ⅲ. 解析結果

1. ケッペンの気候区分による気候区

図2に統計期間1971~2000年のデータ、図3には

統計期間 1981 ~ 2010 年のデータを用いたケッペンの 気候区分結果を示した。1971 ~ 2000 年のデータを用 いた図 2 を見ると,北海道は Dfb に区分される地域 が広く分布している。襟裳や室蘭,道南の沿岸部や 奥尻島には Cfb が見られ,さらに渡島半島から松前 半島にかけての西岸には Cfa,積丹半島の先端部には Cs* が見られる。石狩山地,夕張山地,日高山脈,知 床などの標高が高い地域は Dfc になり,大雪山旭岳 の山頂付近ではわずかであるが ET も確認された。ま た,札幌市内中心部では Dfa が見られた。この図を 木村 (2011)と比較すると,木村 (2011)ではメッシュ 数が非常に少ない Cs*・Dwb・Dfa・ET が省略され ていることがわかる。

一方, 1981 ~ 2010 年のデータを用いた図3でも北 海道全域に Dfb が広く見られる地域は巨視的には変

わらない。しかし,詳細に2期間の気候区分図を比較 すると道内全域の標高の高い地点に分布していた Dfc が縮小していることや,襟裳や室蘭付近において Cfb が拡大していることから,温暖化の傾向がみられる。

					1981~	2010年				스러
		Cs*	Cfa	Cfb	Dwb	Dfa	Dfb	Dfc	ET	
	Cs*	29		10						39
L_	Cfa		159	11						170
97-	Cfb	5	88	1453			135			1681
Ī	Dwb				6		41			47
200	Dfa					1				1
1 N N	Dfb	25		391	247	19	78371	205		79258
- TT	Dfc						865	2405	1	3271
	ET							1	4	5
合	ì計	59	247	1865	253	20	79412	2611	5	84472

図5 Cfaから Cfb へ変化したメッシュの分布

図6 Cfb から Cfa へ変化したメッシュの分布

表1	CfaからCfbへ	変化したメッ	1-1-1-	 / / / / / / / / / / / / / / / / / / /	東経1401 度)	の気温変化(単位:℃)
12 1		攵 しに / ノ	1 (-	111件 44 尺、	不性 140.1 反/	ツメ(皿发し) 牛匹・し	/

	1月	2月	3月	4月	5 月	6月	7月	8月	9月	10 月	11 月	12 月	年平均
1971 ~ 2000 年	-2.1	-1.7	1.2	6.5	10.8	15.5	19.8	22.0	17.9	12.1	5.8	0.7	9.0
1981 ~ 2010 年	-1.8	-1.5	1.4	6.9	11.3	15.7	19.6	21.9	18.1	12.2	6.0	0.6	9.2

表2 Cfb から Cfa へ変化したメッシュ(北緯 41.4167 度, 東経 140.2125 度)の気温変化(単位: ℃)

	1月	2月	3月	4月	5月	6月	7 月	8月	9月	10 月	11 月	12 月	年平均
1971 ~ 2000 年	-1.3	-1.2	1.7	6.8	11.1	15.2	19.5	21.8	18.5	13.0	6.8	1.4	9.4
1981 ~ 2010 年	-0.9	-0.7	2.2	7.2	11.6	15.4	19.4	22.0	18.9	13.0	7.1	1.6	9.7

こうした気候区の変化を次節では個別に見ていくこと とする。

2. 気候変動に伴う気候区の変化

前節では,1971~2000年と1981~2010年の2期 間における気候区分をおこなった。その結果,2つの 期間で気候区が変化したメッシュに着目し,その特徴 と分布を明らかにする。

まず,2期間における気候区ごとのメッシュ数に ついてクロス集計を行った(図4)。図4では,各行 が1971~2000年のデータを用いて区分された気候 区,各列が1981~2010年のデータを用いて区分され た気候区を示している。網掛け部分は,2つの期間で 区分が変化しなかったメッシュ数である。図4をみる と,2期間ともDfbのまま変化しなかったメッシュが 78,371(北海道全体の92.8%)と最多であった。それ ぞれの気候区のメッシュ数に着目すると,ETは増減 無し,Dfcは減少,それ以外の気候区ではメッシュ数 は増加している。北海道内で比較的温暖な気候を示す 気候区のメッシュ数が増加していることが分かった。

以下の各項では、それぞれの変化パターンについて 詳しく見ていくことにする。

(1) Cfa から Cfb への変化

CfaからCfbへの変化は、図5のように渡島半島の 西部など11メッシュで見られた。メッシュ数として は少なく、この変化はあまり目立ったものではない。 CfaとCfbの境界は、最暖月平均気温が22.0℃に達す るかどうかというものであり、表1に示した北緯42 度、東経140.1度のメッシュでは、最暖月8月の平均 気温が 1971 ~ 2000 年には 22.0℃だったが,1981 ~ 2000 年には 21.9℃に下がった。この結果,Cfa から Cfb へと変化している。

(2) Cfb から Cfa への変化

前項(1)とは逆に、CfbからCfaへ変化した場所 は、図6のように渡島半島の西岸からわずかに内陸部 に入ったところ、および奥尻島の沿岸部などである。 変化したメッシュ数は88で、前項(1)で示された CfaからCfbに変化したメッシュ数と比較すると、多 くのメッシュでこの変化が確認された。表2に示した 北緯41.4167度、東経140.2125度のメッシュでは最暖 月(8月)の平均気温が21.8℃(1971~2000年)か ら22.0℃(1981~2010年)に上昇しており、Cfbか らCfaに変化している。渡島半島西岸付近が最暖月平 均気温22.0℃前後となっているために、CfaからCfb への変化はこの付近に集中している。

(3) Cfb から Cs* への変化

Cfb から Cs* に変化した場所は、図7のように積丹 半島と、函館半島の付け根付近にそれぞれ1メッシュ ずつ、松前半島の西部に3メッシュの計5メッシュの みで確認された。積丹半島や松前半島西部には1971 ~2000 年にも Cs* の分布が確認でき、これらの範囲 が広がったと言える。Cs* 気候区に分類されるのは、 C 気候区に区分されることに加えて最多雨月降水量⁵⁾ が最少雨月降水量の3倍を超えた場合である。例え ば、表3に示した北緯41.55度、東経140.0125度のメッ シュでは、1971~2000年には最多雨月(8月)の降 水量が175.4 mm、最少雨月(6月)の降水量が76.4 mm であったが、1981~2010年には最多雨月(8月)

図7 Cfb から Cs* へ変化したメッシュの分布

図8 Cs*からCfb へ変化したメッシュの分布

表3 Cfb から Cs* へ変化したメッシュ(北緯 41.55 度, 東経 140.0125 度)の降水量変化(単位:mm)

	1月	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11 月	12 月	年合計
1971 ~ 2000 年	116.3	100.0	94.1	124.9	134.9	76.4	155.7	175.4	154.6	127.8	153.3	128.2	1541.6
1981 ~ 2010 年	132.3	84.8	84.2	114.6	133.1	65.1	172.1	211.3	176.9	146.9	152.1	118.3	1591.7

表4 Cs*から Cfb へ変化したメッシュ(北緯 43.225 度, 東経 140.325 度)の降水量変化(単位:mm)

	1月	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11 月	12 月	年合計
1971 ~ 2000 年	126.7	84.4	72.4	51.8	70.8	52.7	92.9	116.8	144.1	150.1	158.7	138.2	1259.6
1981 ~ 2010 年	133.9	80.8	62.5	53.1	63.1	51.2	106.6	122.1	126.7	140.0	149.4	128.8	1218.2

の降水量が211.3 mm, 最少雨月(6月)の降水量は 65.1 mmとなっている。最多雨月の降水量が増加し, 最少雨月の降水量が減少したことにより,最多雨月降 水量が最少雨月降水量の3倍を超えたため,Cfbから Cs*へと気候区が変化した。

(4) Cs*から Cfb への変化

Cs*からCfbに変化している場所は、図8に示した 通り、積丹半島の先端部と、渡島半島東部である。前 項(3)において積丹半島の先端部で逆の変化が見ら れていることから、この地域はCs*とCfbの境界付近 にあると考えられる。この変化が確認されたのは10 メッシュである。表4に示した北緯43.225度、東経 140.325度のメッシュでは、1971 ~ 2000年には最少 雨月(4月)降水量は51.8 mm、最多雨月(11月)降 水量は158.7 mmとなっている。これに対して、1981 ~ 2010年には最少雨月(4月)の降水量が53.1 mm にわずかではあるが増加し、最多雨月(11月)降水 量は149.4 mmにやや減少している。月ごとの降水量 が平均化されたことにより、Cs*からCfbに変化した。 (5) Cfb から Dfb への変化

Cfb から Dfb に変化している場所は,図9に示した 渡島半島海岸に沿った少し内陸部と,奥尻島中西部に 135 メッシュ観測された。大区分である C 気候区と D 気候区の境界は,最寒月平均気温 -3℃である。表5 に示した北緯 42.15 度,東経 139.4375 度のメッシュで は,1971 ~ 2000 年は最寒月(1月)の気温が -2.7℃ であったが,1981 ~ 2010 年には最寒月(1月)の気 温は -3.4℃に低下したため,Cfb から Dfb へと,気候 区の大区分が変化した。なお,このメッシュでは,2 月の気温も-2.4℃から-3.2℃と-3℃未満に下がって いる。平均気温はどちらの期間においても7.2℃と変 化がないため、気温の年較差が大きくなったことが分 かる。

(6) Dfb から Cfb への変化

前項(5)とは逆に、DfbからCfbへ変化した場所は、 図10に示したように積丹半島から松前半島にかけて、 道南の海岸線から少し内陸に入った場所と、室蘭、浦 河、襟裳付近に分布している。また、1メッシュだけ ではあるが、雄冬付近にも分布が確認された。メッシュ 数は391と、逆の変化を示す前項(5)よりも多くのメッ シュ数が確認された。表6に示した北緯42.3583度、 東経141.0125度のメッシュでは、最寒月(1月)平 均気温が-3.1℃から-2.3℃へと0.8℃も上昇している。 最寒月平均気温が-3℃以上になったため、Dfbから Cfbに気候区の大区分が変化したといえる。また、こ のメッシュは夏季と比較して冬季に大きな気温の上昇 傾向を示しており、年平均気温についても7.9℃(1971 ~2000年)から8.4℃(1981~2010年)に0.5℃の 大幅な上昇をしている。

(7) Dfb から Cs* への変化

Dfb から Cs* に変化した場所は、図 11 に示したように積丹半島に分布している。この変化は 25 メッシュ で見られた。積丹半島には北部海岸沿いを中心に 2 期間とも Cs* に区分される地域があり、Cs* が拡大し ている。気温について、表7 に示した北緯 43.325 度、 東経 140.45 度の地点では最寒月(1月)の平均気温が -3.1℃(1971~2000年)から-2.7℃(1981~2010年) に上昇しており、D 気候区から C 気候区へ気候の大

図9 Cfb から Dfb へ変化したメッシュの分布

図10 Dfb から Cfb へ変化したメッシュの分布

表5 Cfb から Dfb へ変化したメッシュ(北緯 42.15 度, 東経 139.4375 度)の気温変化(単位:℃)

	1月	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11 月	12 月	年平均
1971 ~ 2000 年	-2.7	-2.4	-0.7	4.0	8.2	12.0	16.6	19.0	16.2	11.4	5.0	-0.2	7.2
1981 ~ 2010 年	-3.4	-3.2	-0.4	4.4	8.4	12.4	16.9	19.4	16.7	11.5	4.7	-1.0	7.2

表6 Dfb から Cfb へ変化したメッシュ(北緯 42.3583 度,東経 141.0125 度)の気温変化(単位:℃)

	1月	2月	3月	4月	5 月	6月	7月	8月	9月	10 月	11 月	12 月	年合計
1971 ~ 2000 年	-3.1	-2.9	0.0	5.1	10.2	13.7	18.0	20.1	17.3	11.8	5.2	-0.3	7.9
1981 ~ 2010 年	-2.3	-2.4	0.8	5.7	10.5	14.0	17.9	20.4	17.8	12.3	5.7	0.1	8.4

図11 Dfb から Cs* へ変化したメッシュの分布

図12 Dfb から Dfa へ変化したメッシュの分布

表7 Dfb から Cs* へ変化したメッシュ(北緯 43.325 度,東経 140.45 度)の気温変化(単位:℃)

	1月	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11 月	12 月	年平均
1971 ~ 2000 年	-3.1	-2.7	0.2	5.7	10.5	14.4	18.8	20.6	16.9	11.1	4.5	-0.6	8.0
1981 ~ 2010 年	-2.7	-2.6	0.5	5.8	10.3	14.3	18.5	20.6	16.9	11.6	4.8	-0.6	8.1

表8 Dfb から Cs* へ変化したメッシュ(北緯 43.325 度, 東経 140.45 度)の降水量変化(単位:mm)

	1月	2月	3月	4月	5 月	6月	7月	8月	9月	10 月	11 月	12 月	年合計
1971 ~ 2000 年	180.6	129.1	105.7	56.2	72.1	51.6	84.2	137.3	172.4	187.1	190.9	186.8	1554.0
1981 ~ 2010 年	202.2	124.2	99.2	59.4	66.0	49.9	116.2	126.0	130.0	194.0	195.1	204.2	1566.4

表9 Dfb から Dfa へ変化したメッシュ(北緯 43.0667 度,東経 141.3 度)の気温変化(単位:℃)

	1月	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11 月	12 月	年平均
1971 ~ 2000 年	-4.4	-3.9	-0.1	6.4	11.9	16.1	20.3	21.7	17.3	11.2	4.5	-1.4	8.3
1981 ~ 2010 年	-4.0	-3.3	0.4	6.9	12.3	16.4	20.2	22.0	17.9	11.5	4.8	-1.2	8.7

図13 Dfb から Dfc へ変化したメッシュの分布

図14 Dfc から Dfb へ変化したメッシュの分布

表10 Dfb から Dfc へ変化したメッシュ(北緯 43.7 度, 東経 141.5125 度)の気温変化(単位:℃)

	1月	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11 月	12 月	年平均
1971 ~ 2000 年	-10.7	-10.9	-7.9	-0.4	4.8	10.1	14.8	15.1	10.1	4.7	-2.1	-7.5	1.7
1981 ~ 2010 年	-10.8	-10.7	-7.5	-1.0	4.7	9.7	14.3	15.2	10.3	4.4	-2.4	-7.8	1.5

表11 Dfc から Dfb へ変化したメッシュ(北緯 43.3667 度, 東経 143.025 度)の気温変化(単位:℃)

	1月	2月	3月	4月	5 月	6月	7月	8月	9月	10 月	11 月	12 月	年平均
1971 ~ 2000 年	-12.7	-12.6	-8.5	-0.8	4.9	9.8	13.9	14.3	10.1	3.9	-3.0	-9.1	0.9
1981 ~ 2010 年	-12.1	-11.6	-6.8	-0.2	6.1	10.2	14.2	15.2	10.8	4.7	-2.1	-8.6	1.7

区分が変化している。降水量については、表8に示 したように、1971~2000年は最少雨月(6月)降水 量が51.6 mm,最多雨月(11月)降水量が190.9 mm と夏季乾燥型の基準を満たしているが、本研究では D気候区について夏季乾燥型のDsを区分しておらず (図1),Dfbと判定されている。また、同じメッシュ で1981~2010年には最少雨月(6月)降水量が49.9 mm,最多雨月(12月)降水量が204.2 mmと、降水 の年較差が大きくなり夏季乾燥型の傾向は強まったも のの、気候区分における夏季乾燥型の判定には影響し ていない。

(8) Dfb から Dfa への変化

Dfb から Dfa に変化した場所は図 12 に示したよう にすべて札幌市内に分布している。この変化は 1971 ~ 2000 年の観測で唯一 Dfa であった 1 メッシュを中 心に19 メッシュで観測されるようになった。表9より, この変化が認められた北緯 43.0667 度,東経 141.3 度 のメッシュでは最暖月 (8 月) 平均気温が 21.7 C (1971 ~ 2000 年) から 22.0 C (1981 ~ 2010 年) に上昇し ており,小区分で b 気候区から a 気候区に変わった ことが分かる (図 1)。分布がすべて都市化の進んだ 札幌市内であることから,都市気候の影響を強く受け た気候区の変化と言える。

(9) Dfb から Dfc への変化

Dfb から Dfc に変化した場所は図 13 に示したよう に、大雪山や日高山脈、暑寒別岳など、標高が高い地 域で北海道全域に見られる。メッシュ数は 205 である。 Df 気候区の小分類では、月平均気温 10℃以上の月が 4ヶ月以上存在すれば b 気候区、3ヶ月以下であれば c 気候区と判別される。表 10 に示したように, この 変化区分に該当する北緯 43.7 度, 東経 141.5125 度の メッシュは, 1971 ~ 2000 年に月平均気温 10℃以上と なったのは, 6~9月の4ヶ月であったが, 1981 ~ 2010 年には, 6月の平均気温が 10.1℃から 9.7℃へ下 がった。このため, 月平均気温が 10℃以上となった のは7~9月の3ヶ月に減少した。同様の変化が見ら れた場所では, Dfb から Dfc に変化した。

(10) Dfc から Dfb への変化

前項(9)とは逆の変化である, Dfc から Dfb に変 化したメッシュ数は、前項(9)と比較して4倍以上、 全地点数の約1%に相当する865であり、気候区が変 化したパターンでは最大のメッシュ数になっている。 変化した場所は図14に示したように、大雪山、日高 山脈、知床山脈、夕張山地などで特に多く見られ、そ の他道北, 道央の標高が高いメッシュでも確認される。 表11に示した北緯43.3667度,東経143.025度のメッ シュについて、1971~2000年には7~9月の3ヶ月 にわたって月平均気温が10℃以上となっていたが、6 月の平均気温が9.8℃から10.2℃に上昇したことによ り.6~9月の4ヶ月にわたって月平均気温が10℃以 上となった。小区分であるb気候区とc気候区の境 界は月平均気温10℃以上の月数で定義される(図1)。 この地域では7~9月という3ヶ月の月平均気温は 10℃を超えているため、b 気候区と c 気候区の境界付 近では6月の月平均気温が10℃を超えるかどうかが 重要な指標になっている。

(11) Dfb から Dwb への変化

Dfb から Dwb に変化した場所は,図 15 に示したよ

図15 Dfb から Dwb へ変化したメッシュの分布

図16 Dwb から Dfb へ変化したメッシュの分布

表 12 Dfb から Dwb へ変化したメッシュ(北緯 43.575 度,東経 145.325 度)の降水量変化(単位:mm)

	1月	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11 月	12 月	年合計
1971 ~ 2000 年	50.1	39.6	58.9	74.2	108.4	101.2	112.6	128.9	166.9	120.7	88.5	53.3	1103.3
1981 ~ 2010 年	34.5	15.9	45.8	76.7	100.1	96.3	126.1	130.9	178.4	95.4	81.8	64.0	1045.9

表13 Dwb から Dfb へ変化したメッシュ(北緯 42.5083 度, 東経 141.9875 度)の降水量変化(単位:mm)

	1月	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11 月	12 月	年合計
1971 ~ 2000 年	19.4	15.9	40.7	74.6	96.2	77.1	117.3	176.9	130.1	84.7	80.5	37.2	950.6
1981 ~ 2010 年	24.3	18.3	39.1	70.2	98.4	73.5	135.4	176.6	130.0	81.6	74.8	38.6	960.8

図17 Dfc から ET へ変化したメッシュの分布

142° E

146° E

図18 ET から Dfc へ変化したメッシュの分布

表14 Dfc から ET へ変化したメッシュ(北緯 43.6583 度,東経 142.9 度)の気温変化(単位:℃)

	1月	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11 月	12 月	年平均
1971 ~ 2000 年	-17.8	-17.4	-14.7	-5.8	-0.5	5.5	10.1	9.6	4.2	-1.1	-8.5	-13.8	-4.2
1981 ~ 2010 年	-16.8	-17.3	-14.0	-6.7	-0.7	5.0	9.8	9.8	4.3	-1.8	-8.4	-14.0	-4.2

表15 ET から Dfc へ変化したメッシュ(北緯 43.6583 度, 東経 142.925 度)の気温変化(単位:℃)

	1月	2月	3月	4月	5 月	6月	7月	8月	9月	10 月	11 月	12 月	年平均
1971 ~ 2000 年	-18.0	-17.6	-15.0	-6.0	-0.8	5.3	9.9	9.4	4.3	-0.9	-8.4	-13.9	-4.3
1981 ~ 2010 年	-16.2	-16.6	-12.8	-6.0	0.0	5.8	10.4	10.5	5.4	-1.0	-7.3	-13.3	-3.4

うに知床半島,根室半島の沿岸部にみられるいくつか のメッシュのほか,野付半島,霧多布,厚岸,湧洞沼 付近,三石付近,狩勝峠付近など247メッシュに分布 している。図1に示されるように最少雨月が冬季にみ られる場合は,最多雨月降水量が最少雨月降水量の 10倍を超えた場合に気候の中区分でw型と判別され る。表12に示した北緯43.575度,東経145.325度のメッ シュでは,1971~2000年に最少雨月(2月)降水量 が39.6 mm,最多雨月(9月)降水量が166.9 mmであっ た。一方,1981~2010年は最少雨月(2月)降水量 が15.9 mmと大きく減少している。最多雨月(9月) 降水量は178.4 mmとやや増えているが,最少雨月降 水量の大幅な減少により,DfbからDwbに気候区が 変化した。

(12) Dwb から Dfb への変化

図 16 に示したように、鵡川付近の海岸線に沿った 地域にのみ確認されたのが Dwb から Dfb へと変化し たパターンである。局地的な分布であり、メッシュ数 は 41 と比較的少ない。表 13 に示したように、この変 化を示す北緯 42.5083 度、東経 141.9875 度のメッシュ では最少雨月(2月)降水量は 1971 ~ 2000 年では 15.9 mm だったが、1981 ~ 2010 年では 18.3 mm に、 最多雨月(8月)降水量は 1971 ~ 2000 年の 176.9 mm から、1981 ~ 2010 年には 176.6 mm へそれぞれ 変化している。最多雨月降水量の変化はごくわずかで あるが、最少雨月降水量が増加したことにより、冬季 乾燥型の Dwb から年中降水型の Dfb に変化した。

前項(11)とは逆方向の気候区の変化であるが, DwbからDfbへ変化している地域は限定的であり, メッシュ数も少ない。

(13) Dfc から ET への変化

図 17 に示した大雪山旭岳山頂付近に 1 メッシュの み, Dfc から ET に変化したメッシュが確認された。 表 14 に示した北緯 43.6583 度, 東経 142.9 度のメッ シュでは最暖月 (7月) 平均気温が 1971 ~ 2000 年の 10.1℃から, 1981 ~ 2010 年の 9.8℃に下がった。この ように最暖月平均気温が 10℃を下回ったことにより, 気候区の大区分が D 気候区から E 気候区へと変化し, ET に区分されるようになった。

(14) ET から Dfc への変化

前項(13)で示されたメッシュと非常に近い,図 18で示した大雪山旭岳山頂付近,北緯43.6583度,東 経142.925度のメッシュでは,表15に示したように 1971~2000年の最暖月(7月)平均気温は9.9℃であり, 1981~2010年の最暖月(8月)平均気温は10.5℃と 上昇している。このメッシュでは,最暖月の平均気温 が10℃を超えるというE気候区からD気候区への気 候区の大区分の変化が生じたため,ETからDfcに区 分が変化した。

Ⅳ.考察

本研究では、北方領土を除く北海道全体について、 ケッペンの気候区分を第3次地域区分(1 km メッ シュ)で適用した。その結果, 第 III 章に示したように, 大部分の地域が Dfb に分類され,山岳部や海岸沿い の一部などでその他の気候区に分類された。これは 宮本(2009)により,気象官署や AMeDAS 観測点の データを使って解析された結果と同様である。しかし, 本研究では,1 km メッシュデータを使用することに より宮本(2009)では示されなかった Cs*・Dwb・ Dfc・ET の場所が北海道内にあることを見いだした。 また,木村(2011)でも記述の無かった Cs*・Dwb・ Dfa・ET が少数ながらみられることもわかった。新 たに見いだした気候区のうち Cs*・Dwbの2つに関 しては,気候区の分類基準が降水量によるものであり, 降水量の影響によるケッペンの気候区分の変化を北海 道内で把握することができた。

Köppen (1936) における Cs には、図1のフロー チャートで Cs* に区分される条件に加えて、夏の最少 雨月降水量 30 mm 未満という条件が示されている。 この条件により、Cs は夏季に乾燥して、降水量の年 較差が大きい地域を示す気候区になっている。また、 本研究ではこの条件を適用せず、Cs*として区分を 行った。Cs* に区分された積丹半島先端部などは、冬 季の降水量が多く、降水量の年較差が大きい地域だと 言える。

北海道の大部分を占める Dfb のほかは,渡島半島 から松前半島にかけての西岸に Cfa,襟裳・室蘭・奥 尻島・道南の沿岸部に Cfb,石狩山地・夕張山地・日 高山脈・知床などの山岳部には Dfc の存在が確認で きたほか,積丹半島の先端部に Cs*,道東および鵡川 付近の一部で Dwb,札幌市内で Dfa,大雪山の頂上 付近には ET が見られた。第 I 章で述べたとおり,ケッ ペンの気候区分は植生景観とほぼ対応する。大雪山の 頂上付近には ET が分布しており,この付近には永久 凍土の存在が確認されている(福田・木下, 1974)。

気候区の境界について、C気候区とD気候区の境 界は最寒月平均気温-3℃であり、D気候区とE気候 区の境界は最暖月平均気温10℃である。ケッペンの 気候区分の小区分であるa気候区とb気候区の境界は 最暖月平均気温 22℃である。1981 ~ 2010 年のデータ を用いて作成した等温線図を図19に示した。図19よ り、C気候区とD気候区の境界が道南の海岸線に沿っ た内陸部に、D気候区とE気候区の境界が大雪山の 頂上付近に位置していることが分かった。図 20 には, 1981~2010年の平年値のうち6月の平均気温が10℃ 未満のメッシュを赤色で示した。10℃未満の月が4ヶ 月以上存在するかどうかが小区分のb気候区とc気 候区の境界であり、図3と比較すると、北海道内では 6月の平均気温10℃がケッペンの気候区分の境界とほ ぼ一致していることが分かった。北海道内にさまざま な気候区の境界が存在していることから、2期間にお ける気温と降水量の違いが気候区の変化に反映されて いる。また、宮本(2009)は、大雪山小泉岳の気温観 測データと上川町の AMeDAS データから標高 1,200 ~ 1,300 m が Dfb と Dfc の境界になっている可能性

を示唆しているが、この地域における1,200 m の等高 線に着目すると、Dfb と Dfc の境界線に近いことが確 認できたことから、本研究でも支持できる。

ところで、ケッペンの気候区分は、もともと世界全 図など広範囲を対象とした区分に適用されることが 多く、小地域の気候区分には向かないとされてきた。 Trewartha and Horn (1980) では、アメリカ合衆国 本土における気候区分の年々変化の図が示されてお り、年ごとに境界線が100 km 以上移動することが示 されている。一方で、本研究では2期間の30年平均 値を解析に用いているため, 年々変化という細かな変 化は平均化されている。にもかかわらず、気候区の境 界付近では2つの期間で変化を見せている。こうした 傾向は、もちろん世界地図レベルでの大都市でも起こ りうる変化である。気候区は不変のものではなく、同 じ基準を用いて気候区分を行っても、気候の平年値の 変化により気候区も変化することはありえる。つまり、 気候区の境界においては、気候変動の影響を繊細に受 け、気候区の変化として明示されやすい。これはヨー ロッパ全域を対象とした Gerstengarbe and Werner (2009)における解析結果とも一致する傾向である。

こうして考えると、今回、北海道という小地域で、 かつ、1 km メッシュデータを用いた解析ではあるも のの、ケッペンの気候区で温暖化の傾向を示す場所が 多かったことは、無視すべき傾向ではないと思われる。 また、この傾向は文部科学省ほか(2013)により示さ れている結果とも調和的である。一方で、降水量の影 響による気候区の変化がみられた地域は限られた範囲 であるが、道東で乾燥化、鵡川付近で湿潤化の傾向が 見られた。

なお,先にも述べたように,北海道で気候区の変化 が見られたのは気候区の境界付近の一部にすぎず,北 海道の大部分(97.6%)では気候区の変化は見られな かったことを再認識しておく必要がある。

V. まとめ

本研究では、1 km メッシュデータを用いて北海道 にケッペンの気候区分を適用した結果、北海道内には、

図20 6月平均気温 10℃未満であるメッシュの分布

Cs*・Cfa・Cfb・Dwb・Dfa・Dfb・Dfc・ET という 8 つの気候区が存在することが分かった。そして,1971 ~2000 年と,1981 ~2010 年という 2 期間で同様の 解析を行い,メッシュごとの気候区の変化が把握でき, 北海道の気候変動による影響の一端をうかがい知るこ とができた。すなわち,寒冷化よりも温暖化の方向性 が強いこと,降水量の変化は限定的であることが示さ れ,従来から他の手法で行われてきた研究と調和的で あった。

ケッペンの気候区分は本来,世界全体の気候区分を 行う場合に適しており,北海道の中での気候区分など 小地域の気候区分には向かないとされてきた。これは, 小地域内では地球規模の気候区の違いが現れにくいと 考えられるからである。しかし,あえて北海道という 比較的小さな地域で適用した結果,北海道内にも多く の気候区を見いだすことができ,気候区の境界線の移 動から気候変動の一部を把握することができた。これ は,北海道にはケッペンの気候区分のC気候区とD 気候区の境界が道南に,またD気候区とE気候区の 境界が大雪山の頂上付近に位置しているなど,気温や 降水の変動が気候区の変化に敏感に反応する地域があ ることを示している。

謝辞

本研究を進めるにあたり,北海道大学大学院情報科学研究科 システム情報科学専攻(北海道大学工学部情報エレクトロニク ス学科システム情報コース)システム共創情報学研究室の各位 には,研究環境の構築などでお世話いただいた。また,平成25 年度北海道地理学会春季学術大会の口頭発表時には,参加者か ら有益なコメントをいただいた。記して謝意を表したい。

注

- ケッペンの気候区分により区分された気候区は、図1など に示したようにアルファベットを使って表記する。
- 英国東アングリア大学気候研究ユニット (Climate Research Unit)
- 「気候値」と「平年値」という名称の違いは、2010年には アメダス観測所が観測を開始してから30年を超え、30年

平均を意味する「平年値」という用語が使えるようになっ たためである。

- 4) 本研究で使用する2種類のデータ「メッシュ気候値2000」、「メッシュ平年値2010」とも、説明書には1kmメッシュと書かれているため、本論文では「1kmメッシュ」と表記する。しかし、本来は第3次地域区画を使用しているため、正確な1kmメッシュではない。札幌市付近を例に取ると、緯度方向が1018m、経度方向が926mとなっており、面積は約0.943 km²である。
- 5)「最多雨月降水量」「最少雨月降水量」という用語は、北海 道のように冬季に雨ではなく雪として降水が見られる地域 でもこのまま用い、「最多降水月降水量」「最少降水月降水 量」とは言わない。

文献

- 片平博文・矢ヶ崎典隆・内藤正典・戸井田克己・友澤和夫・永 田淳嗣・須貝俊彦・丸川知雄・木村圭司(2013):『新詳地理 B』 帝国書院.
- 木村圭司(2011):Ⅱ北海道の地域性. 3.自然環境. 2)気候. 山下克彦・平川一臣 編著:『日本の地誌 3 北海道』朝倉書店, 35-37.
- 帝国書院編集部 編 (1984):『新詳高等社会科地図―初訂版―』 帝国書院.
- 福井英一郎(1938):『気候学』古今書院.
- 福井英一郎編(1985):『日本・世界の気候図』東京堂出版.
- 福田正己・木下誠一(1974):大雪山の永久凍土と気候環境(大 雪山の事例とシベリア・アラスカ・カナダとの比較を中心と しての若干の考察).第四紀研究, 12, 192-202.
- 水越允治・山下脩二(1985):『気候学入門』古今書院.
- 宮本昌幸(2009):東北地方北部から北海道地方におけるケッペンの気候区分の再検討.地理学論集,84,111-117.
- 文部科学省・気象庁・環境省(2013): 『日本の気候変動とその 影響(2012年度版)』, 11-12.
- Beck, C., Grieser, J., Kottek, M., Rubel, F. and Rudolf, B. (2005): Characterizing global climate change by means of Köppen climate classification. *Klimastatusbericht*, 139–149.
- Fraedrich, K., Gerstengarbe, F.-W. and Werner, P.C. (2001): Climate shifts during the last century. *Climatic Change*, 50, 405–417.
- Gerstengarbe, F.-W. and Werner, P.C. (2009): A short update on Koeppen climate shifts in Europe between 1901 and 2003. *Climatic Change*, 92, 99–107.
- Guetter, P.G. and Kutzbach, J.E. (1990): A modified Köppen classification applied to model simulations of glacial and interglacial climates. *Climatic Change*, 16, 193–215.
- Hess, F. and Tasa, D.G. (2013): McKnight's Physical Geography: A Landscape Appreciation, 11th ed. Pearson Education, Prentice Hall, USA.
- Köppen, W. (1936): Das geographische System der Klimate. Handbuch der Klimatologie in fünf Bänden.
- Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F. (2006): World map of the Köppen-Geiger climate classification updated. *Meteorologishe Zeitschrift*, 15, 3, 259–263.

- Peel, M.C., Finlayson, B.L. and McMahon, T.A. (2007): Updated world map of the Köppen-Geiger climate classification. *Hydrology* and Earth System Sciences, 11, 1633–1644.
- Rubel, F. and Kottek, M. (2010): Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. *Meteorologishe Zeitschrift*, 19, 2, 135–141.
- Trewartha, G.T. and Horn, L.H.(1980): *An Introduction to Climate*, 5th ed. McGraw-Hill, USA.

(2013年12月19日受理)